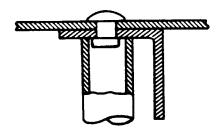
PAGE

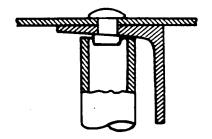
DE HAVILLAND SAIRCRAFT & CANADA

The Gemcor Drivmatic G200BCHX-72 and Craco 3-0068 are automatic riveting machines, which are capable of high quality and pressure/fuel tight rivet

installation per PPS 2.01 and PPS 2.38. The sequential steps are as follows:


- 1. Clamp structure.
- One shot drill and countersink.
- 3. Insert and install rivet.
- 4. Unclamp.

The panels are usually suspended on hoists or tables and manually advanced to the next rivet location. Riveting through fay surface seals is done routinely.


Generally this is a high productivity, low cost method, however, efficiency is greatly enhanced by adhering to the following guidelines to the extent practical:

- 1. Use protruding head rivets where possible (simplified machine set-up).
- 2. Use same diameter as much as possible on any given assembly (fewer set-up changes).
- 3. Consider basic machine reach (refer to Figures 3 and 4) and frame envelope dimensions.
- 4. Consider tool access capabilities and limitations (refer to Figures 6, 7 and 8).
- 5. Consider spacing limitations (refer to Figure 7).
- 6. Avoid use of tapered flanges to provide a flat surface for proper machine clamp up and uniform button thickness (refer to Figure 1).
- 7. Keep manufactured head on the same side on any given assembly to avoid panel turnover.
- 8. Provide for constant rivet spacing in any given pattern to avoid need for hand layout of riveting pattern.
- 9. CONSULT WITH MANUFACTURING ENGINEERING FOR ADVANCES IN TECHNOLOGY DEVELOPMENT OR ADDITIONAL INFORMATION.
- * This DS is similar to Boeing Design Standards 81B3, Section 476.3 with the exception of different equipment.

DRAWN	P. LAM	CLASSIFICATION	STANDARD
CHECKED	SCHRATTNUL		
STRESSED		AUTOMATIC RIVETTING	DS 107
APPROVED	1. Khretne		
	8Jul	(46)	

FLAT COMPONENT RECOMMENDED

TAPERED COMPONENT NOT RECOMMENDED

FIGURE 1

EQUIPMENT 1	THROAT	ALUMINUM RIVET	MAX. SQUEEZE
	CLEARANCE	CAPABILITY	CAPABILITY
Gemcor G-200BCHX-72	72"	3/32 to 1/4	12,000 lbs.
Craco 3-0068	61"	3/32 to 1/4	

TABLE 2 - MACHINE CAPABILITIES

Figures 3 and 4 show machine access envelopes

DRAWN	P. LAM	CLASSIFICATION	STANDARD
CHECKED	SCHEATING		
STRESSED		AUTOMATIC RIVETTING	DS 107
APPROVED	Alknethn		
	8 JULY PE	?	

PAGE 3

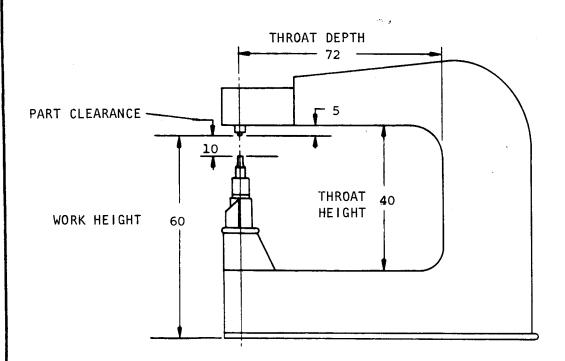


FIGURE 3: ENVELOPE DIMENSIONS FOR DRIVMATIC G200BCHX-72

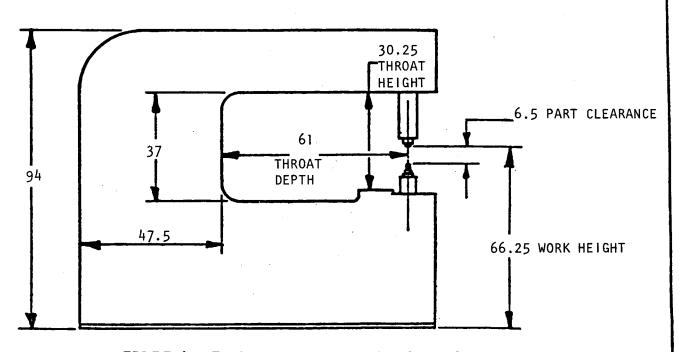
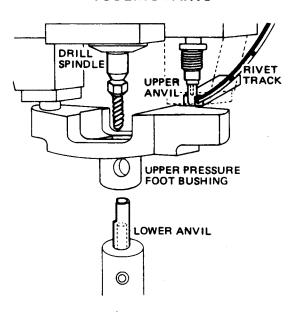


FIGURE 4: ENVELOPE DIMENSIONS FOR CRACO 3-0068

DRAWN P. LAM	CLASSIFICATION	STANDARD
CHECKED SCHEATTING		
STRESSED	AUTOMATIC RIVETTING	DS 107
APPROVED Athatha	•	
BJOLK	R	

DE HAVILLAND SAIRCRAFT & CANADA


STANDARDS SHEET

PAGE 4

Tool Access Requirements

Straight on access is required from the top surface to allow drilling. Figure 5 illustrates the basic components of Drivmatic tooling.

TOOLING PARTS

FIGURE 5: BASIC DRIVMATIC TOOLING COMPONENTS

07
-

STANDARDS SHEET

Drivmatic riveting of angle or TEE components to the top surface of a sheet is possible within the limitations of Figure 6.

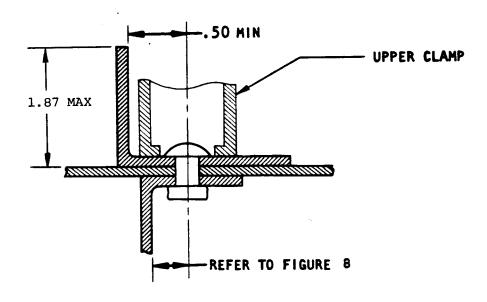
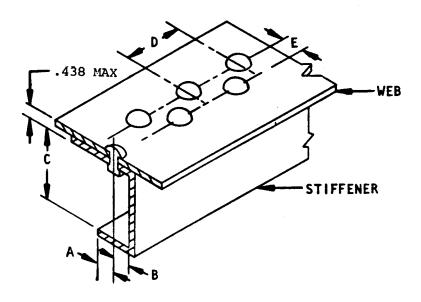



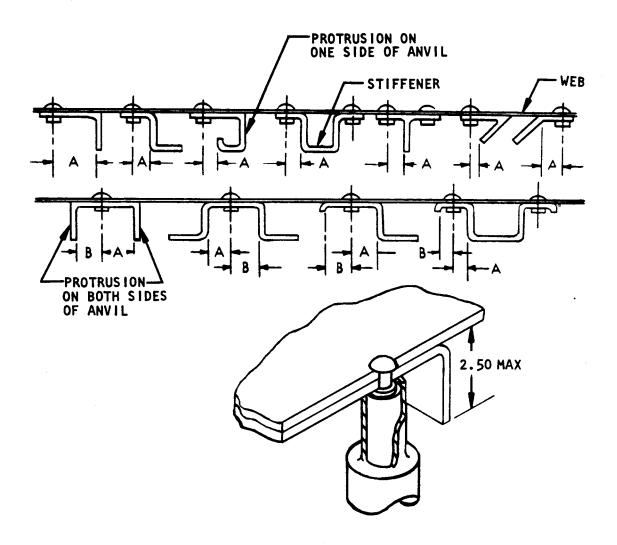
FIGURE 6: UPPER SURFACE TOOL ACCESS LIMITATIONS

DRAWN P.LAM	CLASSIFICATION	STANDARD
CHECKED SCHRATTURE	AUTOMATIC RIVETTING	DS 107
TRESSED	AUTOMATIC RIVETTING	D3 107
PPROVED of figuretion		
2 \ 1		

DE HAVILLAND VIRCRAFT of CANADA PAGE 6

Rivet and row spacing limitations as well as maximum offset capability are shown in Figure 7.

RIVET	A	В		С	D	E
DIAMETER	MAX.	MIN.	MIN.	MAX.	MIN.	MIN.
1/8	•75	•25	.97	3.25	-80	•47
5/32	.81	.31	-97	3.25	-80	•47
3/16	•81	. 34	.97	3.25	•88	•47
1/4	•81	•44	.97	3.25	•94	•59


FIGURE 7: RIVET SPACING LIMITATIONS

DRAWN P. LAM	CLASSIFICATION	STANDARD
CHECKED CHRATTURE		
STRESSED	AUTOMATIC RIVETTING	DS 107
PPROVED of Khreth	ACTORATIC RIVETTING	D3 197
2720		

DE HAVILLAND AIRCRAFT

STANDARDS SHEET

Lower surface tool access must be within the constraints of Figure 8.

RIVET DIAMETER	1/8	5/32	3/16	1/4
A Min.	•25	•25	•28	•34
B Min.	•38	•38	•41	•47

FIGURE 8: LOWER SURFACE STRAIGHT TOOL ACCESS REQUIREMENTS

DRAWN	P. 1.AM	CLASSIFICATION	STANDARD
CHECKED	SCHEATINE	AUTOMATIC RIVETTING	DS 107
STRESSED		ACTOMITTE REFERENCE	03 107
APPROVED	1. 1chruth		
	8201788		

6 E 7